Principles and Methods of Quality Improvement—Using CQI to improve Infection Control Practices

Review of the Cesarean-section Antibiotic Prophylaxis Program in Jordan and Workshop on Rational Medicine Use and Infection Control

Terry Green and Salah Gammouh
Amman, Jordan, March 4-8, 2012

Organized by Ministry of Health, Royal Medical Services, and Jordan Food and Drug Administration in collaboration with SPS and SIAPs
Acknowledgment

Materials adapted from—

• A Modern Paradigm for Improving Healthcare Quality

Outline

• Principles of improvement
• Improvement process
• Continuous Quality Improvement methodology used for the Jordan Antibiotic Surgical Prophylaxis Project
• Quality improvement tools
• Summary
What is High Quality Health Care?

- The right care administered the right way* at the right time with efficient use of resources

* using established methods and delivered in a way that is acceptable to the patient
Achieving Improvement

• Implementing (waiting for) the next “big” thing*
Vs.
• Closing gaps in care using existing resources

* New diagnostics, therapeutics, or prevention measures
Principles of Improvement (1)

• Client (patient) focus
 • Care should be designed to meet the needs and expectations of patients and the community

• Understand the system of care
 • Providers must understand the system of care, including its inputs, key processes, and outcomes, to improve care
Principles of Improvement (2)

- Teamwork
 - System improvement is achieved through a team approach to problem solving
- Test changes in the system using data
 - Data are used to analyze processes, identify problems, and to determine whether changes in the system have resulted in improvement
Client Focus—Needs and Expectations

• Technical performance
• Effectiveness of care
• Service delivery efficiency
• Safety
• Access to services
• Interpersonal relations
• Service continuity
• Physical infrastructure and comfort
• Choice
Understand the System of Care

• Inputs
 • People, infrastructure, materials, information, and technology

• Processes
 • Sequence of activities involving inputs and decision-making

• Outcomes
 • Clinical outcomes, length of stay, cost, patient satisfaction

• System
 • Sum of elements that interact together to achieve an objective
Conceptual Design of a System

<table>
<thead>
<tr>
<th>Resources (Inputs)</th>
<th>Activities (Processes)</th>
<th>Results (Outputs/Outcomes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>People</td>
<td>1. What is done</td>
<td>Health services delivered</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>2. How it is done</td>
<td>Change in health behavior</td>
</tr>
<tr>
<td>Materials/drugs</td>
<td></td>
<td>Change in health status</td>
</tr>
<tr>
<td>Information</td>
<td></td>
<td>Client satisfaction</td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Donabedian (1980)
Teamwork

• Team
 • A high-performing task group whose members are interdependent and share a common objective

• Team members
 • Key players in the parts of the system being improved (stakeholders), experts, people being affected by the system
Test Changes in the System Using Data

- Improvement requires change
- Not all change is improvement
- Data are required to demonstrate that change is improvement
Improvement Process

1. Identify—
 • Determine what to improve

2. Analyze—
 • Understand the system

3. Develop—
 • Design a change to improve the system

4. Test and implement—
 • Test the change and decide whether to abandon, modify, or implement (study, act, plan, do)
Rapid-Cycle, Small-Scale Tests of Change
Identify

- What is the problem?
- How do you know it is a problem?
- How frequently does it occur?
- How long has it existed?
- What are the effects of the problem?
- How will you know when it is resolved?
Analyze

• Describe the system
 • Qualitative—describe the inputs, processes, and outcomes, and their interactions
 • Quantitative—measure the performance of the system
• Formulate ideas about how the system could be improved
Develop

• Develop a series of small changes to be tested sequentially
• Anticipate resistance to change and take steps to minimize it
 • Involve key stakeholders in the work
 • Educate and communicate
Continuous Quality Improvement Methodology used for Jordan CS Project

• Initial workshop – April 2011
• Development of a workplan at each hospital
• Development of a Continuous Quality Improvement (CQI) team at each hospital
• Self-assessment doing feasible activities
• Sharing results at review workshop – March 2012
CQI methodology used for Jordan CS Project (2)

- **Identify** – The use of antibiotics for CS surgical prophylaxis was identified to be suboptimal and wasteful practice.
 - The use of multiple antibiotics (at most hospitals) in multiple doses over several days including at discharge from the hospital
 - The initial dose was frequently given after the surgical procedure
CQI methodology used for Jordan CS Project (3)

• **Analyze** – The system was fragmented, no guidelines available.
 - Review of hospital practices show multiple antibiotics for multiple doses for CS prophylaxis
 - Systematic reviews (Cochrane), RCTs, cohort studies, international guidelines all show a single antibiotic, before surgery is sufficient to provide prophylaxis
CQI methodology used for Jordan CS Project (4)

- **Develop a Change** – New guidelines/protocols for CS prophylaxis were developed and implemented.
- **Test and Implement** - protocols were provided to medical staff. Follow-up procedures and tools were developed to monitor including:
 - CQI meetings
 - Monitoring log
 - CQI tool to record CS prophylaxis and results of indicators
CQI methodology used for Jordan CS Project (5) -

1. Plan
 - Develop a plan of change
 - Collect baseline data
 - Educate and communicate

2. Do
 - Test the change
 - Verify that the change is being tested
 - Collect data about the process being changed

3. Study
 - Verify that the change was tested according to plan
 - See if data are complete and accurate
 - Compare the data with baseline data
 - Compare actual results with predicted or desired results

4. Act
 - Summarize and communicate
 - If the change does not yield the desired results, modify/abandon plan and repeat PDSA
 - Implement a successful change
 - Monitor the change over time
 - Consider implementing the change throughout the system
Quality Improvement Tools

• Identify
 • Brainstorming
 • Affinity analysis
 • Cause-and-effect diagrams

• Analyze
 • Flowcharts
 • Data presentation
 • Pie chart
 • Histogram
 • Run chart

• Develop
 • Benchmarking
 • Storyboards

• Test and implement
 • Gantt charts
 • Storyboards
What Is the Value of These Tools?

They organize the team and help make it more efficient.

- Brainstorming, cause-effect diagram
 - Analyze available information
 - Acknowledge that many factors affect the outcome
 - Gather information from multiple sources: literature, experts, people involved in the system

- Priority matrix, Pareto diagram
 - Rank and prioritize problems and interventions
 - Target work toward the biggest problems
 - Only some factors are within control
 - Only a subset of these can be optimized quickly with existing resources
What Is the Value of These Tools? (2)

- Flowcharts, process measures, run charts
 - Evaluate systems: qualitative and quantitative
 - Target specific areas for improvement
 - Monitor trends in effects of changes
What Is the Value of These Tools? (3)

• Provide a logical history of the team’s work
• Keep work on track
 • Orient new team members
 • Report to leaders
• Simple and applicable to a wide range of problems
Summary

- Improving infection control practices is a key strategy to prevent nosocomial infections and contain AMR.
- A system to identify poor infection control practices and to introduce interventions to improve practices is essential.
- Improving infection control practices and subsequently reducing nosocomial infections and AMR is facilitated and enhanced by using a quality improvement approach.