Implementing an TB/HIV Active Surveillance System in Swaziland

Khontile Kunene

November 2016
This document is made possible by the generous support of the American people through the U.S. Agency for International Development (USAID) Cooperative Agreement Number AID-OAA-A-11-00021. The contents are the responsibility of Management Sciences for Health and do not necessarily reflect the views of USAID or the United States Government.

About SIAPS

The Systems for Improved Access to Pharmaceuticals and Services (SIAPS) Program strives to build capacity within developing countries to effectively manage all aspects of pharmaceutical systems and services. SIAPS focuses on improving governance in the pharmaceutical sector, strengthening pharmaceutical management systems and financing mechanisms, containing antimicrobial resistance, and enhancing access to and appropriate use of medicines.

Recommended Citation

This report may be reproduced if credit is given to SIAPS. Please use the following citation.


Key Words

Pharmacovigilance, active adverse drug event surveillance, patient safety monitoring
## CONTENTS

Abbreviations and Acronyms ........................................................................................................ iv

Introduction ..................................................................................................................................... 1
  Background .................................................................................................................................. 1
  Approach ...................................................................................................................................... 2
  Rationale for Monitoring Medicine Safety in Swaziland ........................................................... 3

Implementing an Active Surveillance System for TB/HIV in Swaziland ................................. 5

Key Findings ................................................................................................................................... 6
  Data Analysis .............................................................................................................................. 6
  Supportive Supervisory Visits .................................................................................................. 12
  Data Dissemination ................................................................................................................... 14
  Challenges at NPVU ................................................................................................................. 14

Information Use and Lessons Learned ......................................................................................... 15
  Review of Data Collection Tool ............................................................................................... 15
  Review SSASSA and DCAT to Align to Changes in Form ..................................................... 15
  Strengthen Supportive Visits and Visibility at Facilities ......................................................... 15
  Resensitization Meetings ......................................................................................................... 15
  Risk Minimization Strategies ................................................................................................. 15
  National Guideline Influence ................................................................................................. 16
  Ministry of Health Decisions ................................................................................................. 16
  PViMS Development ............................................................................................................... 16

Conclusion .................................................................................................................................... 17

Annex A. Selection of Abstracts and Presented Work ................................................................. 18
## ABBREVIATIONS AND ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADE</td>
<td>adverse drug event</td>
</tr>
<tr>
<td>ADR</td>
<td>adverse drug reaction</td>
</tr>
<tr>
<td>AE</td>
<td>adverse event</td>
</tr>
<tr>
<td>ART</td>
<td>antiretroviral treatment</td>
</tr>
<tr>
<td>ARV</td>
<td>antiretroviral medicines</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>DCAT</td>
<td>data collation and analysis tool</td>
</tr>
<tr>
<td>DR-TB</td>
<td>drug resistant tuberculosis</td>
</tr>
<tr>
<td>HAART</td>
<td>highly-active antiretroviral therapy</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>MSH</td>
<td>Management Sciences for Health</td>
</tr>
<tr>
<td>MOH</td>
<td>Ministry of Health</td>
</tr>
<tr>
<td>NPVU</td>
<td>National Pharmacovigilance Unit</td>
</tr>
<tr>
<td>PV</td>
<td>pharmacovigilance</td>
</tr>
<tr>
<td>PViMS</td>
<td>Pharmacovigilance Information Management System</td>
</tr>
<tr>
<td>SIAPS</td>
<td>Systems for Improved Access to Pharmaceuticals and Services (Program)</td>
</tr>
<tr>
<td>SSASSA</td>
<td>Sentinel Site-based Active Surveillance System for Antiretroviral and Anti-TB</td>
</tr>
<tr>
<td>SPS</td>
<td>Strengthening Pharmaceutical Systems (Program)</td>
</tr>
<tr>
<td>TB</td>
<td>tuberculosis</td>
</tr>
<tr>
<td>USAID</td>
<td>US Agency for International Development</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
INTRODUCTION

Background

Swaziland has an HIV prevalence of 26% and has one of the highest tuberculosis (TB) burdens globally. The TB incidence rate is 733/100,000, and the drug-resistant TB (DR-TB) prevalence is 7.7% and 33.7% among new and previously treated patients, respectively. The HIV/TB co-infection rate is around 80%, and 66% of TB/HIV co-infected patients are receiving treatment for both diseases. As new essential medicines for HIV/AIDS and DR-TB are being introduced and used in large quantities in resource-constrained countries like Swaziland, the importance of monitoring adverse effects and assuring therapeutic effectiveness is increasing. The burden of adverse drug events (AEs) from poor product quality, adverse drug reactions (ADRs), and medication errors can prevent these new medicines from benefitting users to the fullest potential, as well as pose great challenges for health care systems.

Inadequate monitoring and management of adverse drug events (ADEs) has a negative impact on morbidity and mortality rates. It also increases the burden of disease management on the health system due to both direct cost and indirect costs associated with ADEs, including:

- Loss of confidence in the health system
- Economic loss to the pharmaceutical industry
- Non-adherence to treatment
- Development of drug resistance

A well-integrated, comprehensive pharmacovigilance (PV) system is necessary to reduce the risks associated with ADEs, improve patient management, and provide evidence-based information to inform treatment decisions and promote rational medicine use. Nonetheless, many developing countries still do not have the structures, systems, or resources in place to support PV and medicines safety activities. They also often lack unbiased, evidence-based information to help guide regulatory and patient safety decisions.

In addition to passive surveillance, sentinel site-based active surveillance is a key approach to strengthening a country’s PV and medicines safety system. Although about 70% of the world’s patients on ARVs live in Africa, the continent accounts for just 6% of the ARV-related ADRs reported worldwide. A study on PV in sub-Saharan Africa conducted by the USAID-funded Strengthening Pharmaceutical Systems (SPS) Program in 2011 similarly found that fewer than 30% of the 42 African countries surveyed had legal mandates for post-market safety surveillance

---

reporting\textsuperscript{6}, meaning that health care workers and marketing approval holders are not compelled to monitor patient safety and report ADRs. Given limited resources and legal authority, as well as lacking PV practices, ADR reporting rates remain low in many developing countries. For this reason, the Swaziland Ministry of Health (MOH) introduced an active surveillance system to complement the existing passive surveillance system (in which there were less than 30 ADRs reported per annum for all disease conditions).

Approach

The Systems for Improved Access to Pharmaceuticals and Services (SIAPS) Program supported the MOH in mobilizing key stakeholders from the Swaziland National AIDS Program and the National Tuberculosis Control Program to introduce and implement an active surveillance system for patients on ARVs and anti-TB treatment. SIAPS provided technical assistance to MOH’s National Pharmacovigilance Unit (NPVU) to develop the protocol and tools to implement the system, as well as to develop a system for recruiting patients at the HIV and TB sites.

The technical assistance also included the development and implementation of, as well as capacity-building in, electronic tools deployed at the central and facility levels. The Sentinel Site-based Active Surveillance System for Antiretroviral and Anti-TB (SSASSA) is the electronic database that is used to report the ADEs at health facility level, and the data collation and analysis tool (DCAT) system is used for data analysis at the NPVU level. The system documents and quantifies incidence rates of AEs associated with ARVs and anti-TB medicines, and determines risk factors at selected sentinel sites. The HIV/TB active surveillance system was officially launched in May 2013, and subsequently implemented at five hospitals. The system was piloted as a two-year prospective observational cohort study whereby:

- Clinicians in the health facilities enroll treatment-naïve HIV patients and TB patients starting a new regimen. Clinicians follow up with these patients at each visit to determine if they experience any ADEs.
- Relevant patient information is captured in the system (SSASSA) by data clerks, from the paper-based patient files.
- Data is collected monthly and analyzed centrally using DCAT.

A systems approach was used to strengthen PV in Swaziland and establish the active PV system (Figure 1). This approach promotes the intersection of people, functions, and structures at all levels of the health system to arrive at local decisions that prevent medicine-related problems and

reduce associated morbidity and mortality. This approach highlights the need for building capacity to carry out both passive and active surveillance methods, and highlights the complementary nature of these approaches in ensuring a robust system for addressing medicines safety issues.

<table>
<thead>
<tr>
<th>PEOPLE</th>
<th>FUNCTIONS</th>
<th>STRUCTURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporters</td>
<td>Reporting (Detection and Generation)</td>
<td>Manufacturers</td>
</tr>
<tr>
<td>Doctors</td>
<td>Report side effects and suspected adverse events</td>
<td>Pharmacovigilance Center</td>
</tr>
<tr>
<td>Pharmacists</td>
<td>Data Collation (Evaluation)</td>
<td>DTCs</td>
</tr>
<tr>
<td>Nurses</td>
<td>Collate data, conduct initial analysis</td>
<td>Safety Advisory Committees</td>
</tr>
<tr>
<td>Other Health Care Workers</td>
<td>Causality Analysis and Risk Determination</td>
<td>Regulatory Authority</td>
</tr>
<tr>
<td>Consumers</td>
<td>Establish causality or determine if further epidemiologic studies are required to establish association</td>
<td>Industry</td>
</tr>
<tr>
<td>Evaluators</td>
<td>Decision Making and Appropriate Action</td>
<td>Health Services</td>
</tr>
<tr>
<td>Medical Specialists</td>
<td>Package insert amendments, warnings, scheduling changes, risk management, market withdrawal, product recall, etc.</td>
<td>Professional Groups</td>
</tr>
<tr>
<td>Clinical Pharmacologists</td>
<td></td>
<td>Advisory Committees</td>
</tr>
<tr>
<td>Pharmacists</td>
<td></td>
<td>Media</td>
</tr>
<tr>
<td>Epidemiologists</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: PV framework: relating people, functions, structures, and expected outcome and impact.

Rationale for Monitoring Medicine Safety in Swaziland

There are currently 172,871 (August 2016) people on antiretrovirals (ARVs) in Swaziland. The revisions of the highly active antiretroviral therapy (HAART) eligibility criteria will lead to an

---


8 Ibid, 6.

9 Criteria were revised to take into account people with CD4 count of <500 (changed from CD4 count of <350) and life-long treatment of all people (changed from lifelong treatment for HIV+ pregnant women, regardless of CD4 count)
increase in these numbers. Swaziland also has a very high TB incidence rate (733 per 100,000 people)\textsuperscript{10}, and TB is the leading killer of HIV-positive people. In the absence of a comprehensive PV system in Swaziland, little was known about the epidemiology of the toxicity or risk-benefit profiles of ARVs and TB medicines in the Swaziland population. Drug-related morbidity and mortality in patients on ARVs, TB, and DR-TB medicines—especially those co-infected and who are on treatment for both—had not been quantified and posed significant challenges to enhancing treatment outcomes.

Given that ADRs are one of the most important factors in determining patient adherence, it is important to monitor, manage, and prevent AEs. Although the SIAPS predecessor program, SPS, supported the implementation of a passive surveillance system and the development of accompanying tools, the passive surveillance system only resulted in about 30 ADRs reported per annum. This prompted the implementation of a complementary active surveillance system to improve patient safety monitoring and ADR reporting rates.

Furthermore, the introduction of new medicines for DR-TB (bedaquiline and delamanid) and shorter DR-TB regimens (in 2015 and 2016, respectively) necessitated that countries have active surveillance systems. Swaziland’s establishment of such a system helped eliminate delays in accessing these new medicines and regimens.

IMPLEMENTING AN ACTIVE SURVEILLANCE SYSTEM FOR TB/HIV IN SWAZILAND

The MOH, supported by SIAPS, established a two-year pilot active surveillance system to monitor the safety, quality and effectiveness of ARVs and anti-TB medicines at selected sentinel sites in Swaziland, starting in June 2013. The goal of this system was to develop, implement, and demonstrate the feasibility of a practical and sustainable PV system at the local level, which could later be scaled up throughout the country. The system was also meant to facilitate capacity building for future active surveillance of other high risk medicines, similar settings, and populations. The results from this activity will help inform future revisions of in-country treatment guidelines and regulatory decisions. The active surveillance system systematically documents and quantifies the incidence rate of AEs associated with ARVs and TB medicines. In addition, the active surveillance system generates local data to provide better estimates of risk-benefit profiles and help prevent and minimize such risks to patients on treatment.

The active surveillance system was implemented at the following five sentinel sites:

- Good Shepherd Hospital
- Hlathikhulu Government Hospital
- Mbabane Government Hospital
- National TB Hospital
- Raleigh Fitkin Memorial (RFM) Hospital

Following the end of the pilot phase, the MOH rolled out the active surveillance system to two additional facilities in August 2015, namely; Matsapha Comprehensive Care Clinic (MSF Matsapha) and AIDS Health Care Foundation (AHF) clinic. In addition to the rates and types of AEs, the SSASSA system allows for data tracking and reporting on adherence levels, the severity of AEs, patient demographics, and reasons for switching regimens.

SIAPS supports the NPVU in conducting monthly data collection from the five sentinel sites, as well as in bi-monthly supportive supervisory visits and the quarterly analysis and dissemination of PV data at the national and regional levels. The supportive supervisory visits also serve as part of the capacity-building activities.
KEY FINDINGS

Data Analysis

The active surveillance data presented in the following table and graphs represents the results for analysis of data recorded from June 1, 2013 to September 30, 2016. The data analysis shows that 4210 patients were enrolled on the active surveillance system between May 2013 and September 2016, and 1224 ADEs were reported (Table 1).

Table 1: Patients enrolled at the 7 sentinel sites

<table>
<thead>
<tr>
<th>Facility</th>
<th># of Patients</th>
<th># of ADEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSF - Matsapha</td>
<td>1447</td>
<td>19</td>
</tr>
<tr>
<td>National TB Hospital</td>
<td>311</td>
<td>520</td>
</tr>
<tr>
<td>RFM Hospital</td>
<td>689</td>
<td>268</td>
</tr>
<tr>
<td>Good Shepherd Hospital</td>
<td>518</td>
<td>235</td>
</tr>
<tr>
<td>AHF Clinic</td>
<td>261</td>
<td>17</td>
</tr>
<tr>
<td>Hlahnkhulu Government Hospital</td>
<td>500</td>
<td>21</td>
</tr>
<tr>
<td>Mbabane Government Hospital</td>
<td>484</td>
<td>144</td>
</tr>
<tr>
<td><strong>Total</strong></td>
<td><strong>4210</strong></td>
<td><strong>1224</strong></td>
</tr>
</tbody>
</table>

Gender and Age Distribution of Patients Reporting ADEs

Of patients enrolled in the active system who reported ADEs, 58% were female and 42% were male. This is in line with the general enrollment percentages: 44% males and 56% females. Throughout the reporting periods, the reporting rate has consistently remained marginally lower for males than females. The age distribution of the patients who reported ADEs is represented in Figure 2.

![% ADE distribution by age group (n=1,224)](image_url)
Summary of ADEs

Of the enrolled patients, 76% are using ARVs and 24% are using anti-TB medicines. However, 58% of the ADEs were from patients on TB medicines, while 42% were from patients on ARVs. The most prevalent ADEs among all enrolled patients were gastrointestinal effects and peripheral neuropathy, at 17%, followed by central nervous system (CNS) effects, at 11%. A selection of the top reported ADEs for all patients are shown in Figure 3.

![Selection of 10 most frequently reported ADEs](image)

**Figure 3: Selection of top 10 ADEs reported by patients on ARVs and TB medicines (n=1,224)**

ARV Focus

The leading complaint among patients on ARVs was gastrointestinal disturbances (including nausea, vomiting, diarrhea, and gastrointestinal pain) at 20%. This was followed by rash and peripheral neuropathy, at 14%. CNS effects decreased from 15% to 9% in this reporting period (compared to the last reporting period), while hepatotoxicity reports decreased from 9% to 8%. Gynecomastia increased from 0.3% in the last reporting period, to 4%, which could be due to increased awareness among clinicians as the last newsletter (used to disseminate PV findings) included an alert to health care workers on the increasing incidence of efavirenz-induced gynecomastia, as well as information on how to identify and manage of this condition.
Implementing a TB/HIV Active Surveillance System in Swaziland

Figure 4: Selection of top 10 ADEs reported by patients on ARVs (n=514)

Selection of top 10 ADEs from ARVs (n=514)

- Gastrointestinal disturbances: 25%
- Rash: 17%
- Hepatotoxicity: 16%
- CNS disturbances: 9%
- Dizziness: 9%
- Weakness, fatigue: 7%
- Anemia: 5%
- Fever: 4%
- Kidney failure: 3%
- Other: 3%

Figure 5: Percentage of patients on ARVs reporting ADEs by regimen (n=514)

Percentage of Patients with ADEs by ART Regimen (n=385)

- TDF + 3TC + EFV: 76%
- AZT + 3TC + NVP: 11%
- ABC + 3TC + EFV: 3%
- ABC + 3TC + NVP: 5%
- AZT + 3TC + EFV: 2%
- LPV/r: 1%
- TDF + 3TC + NVP: 2%
- ABC + DDI + LPV/r: 1%

3TC: Lamivudine
LPV/r: Lopinavir/ritonavir
The majority of patients reporting ADEs were on tenofovir/lamivudine/efavirenz (TDF + 3TC + EFV), which is to be expected as close to 80% of the patients on ARVs are on this first-line regimen.

**TB Medicines Focus**

For patients on anti-TB medicines, the most frequently reported ADEs were peripheral neuropathy (34%) and gastrointestinal disturbances (14%) for drug-susceptible TB patients (Figure 6), and hearing disturbances (19%) and gastrointestinal disturbances (14%) for patients on DR-TB treatment (Figure 7). Injectable-containing regimens account for most ADE reports (54%), followed by the drug-susceptible TB regimen of rifampicin/isoniazid/pyrazinamide/ethambutol, which accounted for 21% of the reported ADEs (Figure 8).

![Figure 6: Selection of top 10 ADEs reported by patients on first-line TB medicines (n=213)](image)
Severity Grading

In terms of severity, the majority (54%) of the ADEs were mild at Grade 1 severity, as can be seen in Figure 9. The ADE grades are defined as follows:

- Grade 1: Mild ADE
- Grade 2: Moderate ADE
- Grade 3: Severe ADE
Key Findings

- Grade 4: Life-threatening or disabling ADE
- Grade 5: Death related to ADE

The most prevalent amongst the ADEs with severity of grades 3-5 were hearing disturbances (20%), gastrointestinal disturbances (14%) and rash (11%).

Figure 9: Percentage of ADEs by severity for ARVs and TB medicines (n=1,224)

Figure 10: Selection of 11 most frequently reported ADEs in grades 3-5 (n=257)
ADEs accounted for a change in 14% of all regimen changes and clinical failure accounted for 7% of the changes (Figure 11). As expected, the most common reason for changing regimen amongst TB patients was the change to the continuation phase following consecutive negative sputum results, which is in accordance with the treatment guidelines.

**Supportive Supervisory Visits**

Supervisory visits are conducted by the NPVU on a monthly basis to collect data and to determine if the facilities need any technical support. For new facilities, and for facilities whose data indicates reporting issues, the supportive supervisory visits are conducted every two weeks until all issues are resolved. The visits were conducted every two months in 2013, but this changed to more frequent visits in June 2014 after some of the problems highlighted below were noted.

The supportive visits and data analysis revealed that the patient enrollment rates were below what was expected. Targeted supportive visits were then conducted to identify bottle necks and explore possible solutions to the poor enrolment rates by clinicians and non-entry of data by data clerks. The following issues were identified in the sentinel sites, and were found to be common among all the sites:

- Human resource shortages
- SSASSA only installed on one computer, therefore only one person can capture data at a time
- Clinicians not enrolling patients as planned, due to some trained physicians leaving the facilities

Table 2 shows the critical site-specific issues and the solutions that were carried out to address them.
### Table 2: Summary of major findings from supportive supervision visits

<table>
<thead>
<tr>
<th>Issue</th>
<th>Causes</th>
<th>Interventions</th>
</tr>
</thead>
</table>
| Non-entry of data into SSASSA (despite presence of completed forms and new data to be entered) | Human resource constraints  
- Insufficient number of data clerks for work load  
- Data clerks attrition and remaining data clerks not competent on use of SSASSA | SIAPS engaged a data capturer to rotate among the facilities and assist in addressing issues of data entry back logs and to support capacity building initiatives for facility data clerks  
Conducted re-sensitization meetings and trainings for data entry staff members |
| Non-entry of data into SSASSA due to system problems | SSASSA being incompatible with operating system in health facility computers.  
SSASSA version incompatibilities (different versions at some facilities)  
Replacement of servers leading to loss of SSASSA and data  
SSASSA being deployed on only one computer meaning that only one person can enter data | SIAPS provided technical assistance in updating facility computer operating systems and verification of versions across all facilities.  
SIAPS supported the re-deployment of database from NPVU back-ups  
SSASSA was deployed in multiple computers to enable another data clerk at the TB Unit who could assist in entering the data into SSASSA but was unable to do so because SSASSA was only in one computer. |
| Data quality importation issues when importing SSASSA data onto DCAT for NPVU analysis | Data quality importation issues when importing SSASSA data onto DCAT for NPVU analysis  
SSASSA version was updated to align fields that are mandatory for successful importation into DCAT. | The new version was deployed to all facilities and all users trained on the necessary fields.  
DCAT was also reviewed to eliminate certain gaps identified during data analysis.  
Development of pharmacovigilance information system (PVIMS) – a web-based system to eliminate data importation issues emanating from the use of different platforms. |
| Decreased recruitment and reporting rates | Attrition of trained clinical personnel  
ADR monitoring and reporting fatigue by clinicians  
Move of focal staff member from health facility  
Clinicians view reporting as an extra activity on top of their full schedules | SIAPS supported the NPVU to conduct retrospective capturing of patient information to ensure that information on SSASSA was up-to-date and to improve enrolment rates  
The following activities were conducted by the NPVU (supported by SIAPS):  
- Quarterly data feedback during facility meetings  
- Annual national stakeholder forum  
- Re-sensitization meetings for clinicians and data unit staff  
- Supportive supervision visits (at least bi-monthly, but more frequent when necessary) |
| Slow TB enrollment and ADR monitoring and reporting | Lack of full-time TB doctors leading to few or no patients being enrolled (nurses were not comfortable with conducting the activity in the absence of a clinician) | Re-sensitization meetings conducted. ART clinicians requested to support TB units. |
| Data collection tool issues | Tool too lengthy (requiring more time)  
Tool too bulky (resulting in thickening patient files) | The tool was revised and condensed, and adopted during a national stakeholder forum. |
Data Dissemination

Newsletter

SIAPS supported the Ministry in the development of the Medicines Safety Watch, a quarterly newsletter designed to disseminate information on medicines safety (pictured).

Copies are printed and distributed to all health facilities, and electronic copies are mailed to all stakeholders.

Facility-Level Data Dissemination

Facility-specific data is disseminated at each health facility on a quarterly basis.

Data Dissemination Stakeholder Forum

There is also an annual stakeholder data dissemination meeting to share findings and PV updates, as well as to chart a way forward in continually strengthening active surveillance implementation.

Conference Presentations

The findings on the medicines risk profiles have been shared at a number of national and international conferences. A selection of abstracts and presentations is included in Annex A.

Uppsala Monitoring Centre Database

SIAPS supported Swaziland in qualifying as a member of the WHO Programme for International Drug Monitoring administered by the Uppsala Monitoring Centre. Consequently, Swaziland qualified as a full member of this international drug safety monitoring network in June 2015. SIAPS continues to support the NPVU to upload Swaziland reports onto the database, Vigiflow.

Challenges at NPVU

The use of different platforms for the databases that were used at the facility level and by the NPVU resulted in some data not being imported into the data analysis system. The facility SSASSA system is based in Microsoft Access®, and the NPVU system (DCAT) is a Microsoft SQL application. Data quality issues meant that some data that did not meet DCAT standards would not be imported into DCAT, meaning that the numbers of patients and ADEs would be lower in DCAT than the numbers in SSASSA.
INFORMATION USE AND LESSONS LEARNED

Review of Data Collection Tool

Feedback from supportive supervision visits and national stakeholder meetings, and lessons learnt from data analysis by the NPVU were used to improve the data collection tool. A version control tracker was also introduced into the tool to ensure that all facilities use the most up-to-date version of the tool, and to more easily disseminate communications.

Review SSASSA and DCAT to Align to Changes in Form

Some of the lessons learnt from the use of SSASSA by health facilities and DCAT by the NPVU were used to improve the versions of SSASSA and DCAT that were initially deployed at the five facilities and the national level, respectively. Consequently, system bugs were fixed and a newer version re-deployed to the five facilities and to new facilities as they were added on.

Strengthen Supportive Visits and Visibility at Facilities

The presence of the NPVU, supported by the SIAPS team, was strengthened with bi-weekly visits by the supervisory team to any new sites and monthly visits to all sentinel sites. This was to maintain the momentum of the activity, and to enable the supervisory team to identify and respond quicker to issues at facility level.

Resensitization Meetings

There were re-sensitization meetings at all the sites to ensure that new personnel are familiar with the tools, thus addressing issues of staff turnover.

Risk Minimization Strategies

SIAPS used the lessons learned from the implementation of the active surveillance system to support the development of prescriber and public risk mitigation material. The findings have been used to revise treatment guidelines and develop job aids for health professionals and patients to facilitate the early identification and management of ADEs, and promote patient safety and adherence. This included the:

- Development of an ADE definition and severity grading job aid to facilitate the uniform identification and severity grading of ADEs so data was more consistent and accurate to enable quality decision-making by programmes and clinicians.

- Development of a reporting cascade job aid for health care workers.
• Development of ADE monitoring and reporting job aid for patients to encourage the reporting of ADEs.

National Guideline Influence

The data has been used to inform the following national decisions:

• The safety profile of DR-TB medicines and associated toxicities in the Swaziland population have been used to inform the revision of national programmatic management of drug-resistant TB guidelines.

• The data is being used to formulate clinical guidance on the adoption and implementation of a shortened multi-drug resistant TB (MDR-TB) treatment regimen.

• The data were used to quantify the country’s needs for bedaquiline (factoring in patients who will benefit from bedaquiline due to toxicities on current second-line treatment). The data were also used to quantify the need for raltegravir (an ARV that does not interact negatively with bedaquiline) for those patients who are also taking bedaquiline (i.e., HIV-TB co-infected patients on treatment for both HIV and drug-resistant TB) to avoid undesired interactions between efavirenz and bedaquiline.

Ministry of Health Decisions

The MOH formally established an NPVU in November 2014 to oversee PV activities, including quarterly causality assessments and information sharing. The NPVU is under the Office of the Chief Pharmacist, and SIAPS is providing technical assistance to the unit. This unit will be moved to the medicines regulatory authority upon establishment of the authority.

The strength of the data generated from the system also supported the establishment of a National Patient Safety Monitoring Committee. Furthermore, based on the evidence presented by the data, the MOH expanded the system to two more facilities in 2015, with plans to expand to all hospitals by 2017.

PViMS Development

The challenges faced in implementing the electronic PV tools informed the development of a new system, the PViMS. PViMS is a web-based tool developed by SIAPS that facilitates more streamlined data collection and analysis. This tool will be rolled out in Swaziland in 2017.
CONCLUSION

The active surveillance system has shown the feasibility of systematically documenting the incidence rate of ADEs associated with ARVs and anti-TB medicines to generate local data that will provide better estimates of risk-benefit profiles. This is crucial as PV systems need to meet the demands placed on them by the rapidly increasing access to medicines.
ANNEX A. SELECTION OF ABSTRACTS AND PRESENTED WORK

Oral Presentation given at the 45th Union Conference on Lung Health and Tuberculosis, Barcelona, Spain, October 2014

INTRODUCTION

- Switzerland has an HIV prevalence of 2%, which is the lowest of the countries with the highest TB burden in Europe.
- The HIV/TB co-infection rate is about 80% and 60% of TB/HIV co-infected patients are receiving treatment for both.
- The continuous introduction of new essential medicines necessitates the competent monitoring of their adverse effects.
- The burden of adverse events from new products, partly due to drug reactions, ADEs, may result in reduced benefits from these new medicines.

THE APPROACH: Pharmacovigilance capacity building model

THE APPROACH Cont.

- Passive/Spontaneous Reporting
  - Ongoing
  - ADIS Reports using standard form

- Active Surveillance
  - Pre- and post-treatment sites
  - HIV/TB Focus
  - Electronic tools (SSASU for facilities and CEPH for Pharmacovigilance unit)
  - Leverage existing M&E structures and resources and build on sustainable platform contributing to other surveillance activities
  - Engage all relevant stakeholders and ensure local ownership
  - Use surveillance data for decision-making and improving treatment outcomes

RESULTS

Aggregate Results

<table>
<thead>
<tr>
<th>Category</th>
<th>Total # of Patients</th>
<th>Total # of AEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1691</td>
<td>192</td>
</tr>
<tr>
<td>Number of patients</td>
<td>1691</td>
<td>192</td>
</tr>
<tr>
<td>Total number of AEs reported</td>
<td>192</td>
<td>192</td>
</tr>
<tr>
<td>66% of the patients enrolled are using ARVs</td>
<td>192</td>
<td>192</td>
</tr>
<tr>
<td>52% are using and TB medicines</td>
<td>192</td>
<td>192</td>
</tr>
<tr>
<td>47% of ADEs – patients on TB treatment</td>
<td>192</td>
<td>192</td>
</tr>
<tr>
<td>Patients on ART reported 37% of the ADEs</td>
<td>192</td>
<td>192</td>
</tr>
</tbody>
</table>
Annex A. Selection of Abstracts and Presented Work

RESULTS Cont.

- Females - 62%
- Males - 38%

RESULTS Cont.

- Overall
  - Most common peripheral neuropathy: 10%
  - Followed by rash: 9%
  - Vomiting & dizziness: 7%

- Patients on TB treatment
  - Peripheral neuropathy (12%)
  - Hearing disturbances: 8%
  - Rash: 6%

RESULTS Cont.

- The most prevalent amongst the ADEs with severity of grades 2-5:
  - Hearing disturbances: 14%
  - Rash: 14%
  - Vomiting: 6%

- The ADE grades are defined as follows:
  - Grade 1: Mild ADE
  - Grade 2: Moderate ADE
  - Grade 3: Severe ADE
  - Grade 4: Life-threatening or disabling ADE
  - Grade 5: Death related to ADE

RESULTS Cont.

- ADEs by TB Regimen
  - Ranamycin: 14%
  - Ethambutol: 10%
  - Pyrazinamide: 4%
  - Para-amino salicylic acid: 4%

  - The next leading TB regimen for which ADEs were reported was Rifampicin/Isoniazid/Pyrazinamide/Thiamethadione.
  - Most common ADEs were peripheral neuropathy (21%) and rash (12%)

RESULTS Cont.

- Reason for Changing Regimen
  - Most common reason amongst TB patients was the change to the continuation phase following consecutive negative sputum results.

- Adverse drug events accounted for a change in 14% of all regimen changes.

- Clinical failure accounted for 7% of the changes.

CONCLUSION

- This activity demonstrates the local feasibility of a practical and sustainable pharmacovigilance system that can be used to promote the safety of TB medicines at the community level.

- Based on one of the practical issues that affect adherence, quality of life, and treatment outcomes.

- Can inform health providers and contribute to the improvement of quality of care.

THANK YOU
Implementing a HIV/TB active surveillance system in Swaziland

Khontile Kunene

Background
Swaziland has an HIV prevalence of 26% while she remains one of the countries with the highest TB burdens globally. The HIV/TB co-infection rate about 80% and 66% of TB/HIV co-infected patients are receiving treatment for both. The continuous introduction of new essential medicines necessitates the concurrent monitoring of their adverse effects. As such, the Ministry of Health (MOH), supported by the USAID-funded Systems for Improved Access to Pharmaceuticals and Services (SIAPS) program implemented by Management Sciences for Health, prioritised the establishment of an HIV/TB active surveillance system in order to help reduce chances of medicine resistance and increase patient compliance and retention rates.

Methods
SIAPS supported the MOH to develop the protocol and tools to operate the Sentinel Site-based Active Surveillance System for Antiretroviral and Anti-TB (SSASSA) electronic system.
- The 2-year prospective observational cohort study was introduced at 5 pilot hospitals and 1 clinic in May/June 2013.
- Clinicians enrol (and follow up for 2 years) treatment naïve HIV patients and TB patients starting a new regimen.
- Relevant patient information is captured onto the system by data clerks.
- Data is collected monthly and analysed centrally using DCAT analysis tool.

Results
A total of 1691 patients have been enrolled from June 2013 to June 2014 and there have been 905 adverse events (ADRs) reported. Peripheral neuropathy (15%) and rash (10%) are the most common, with kidney failure, ototoxicity and death being the most severe. Most of the ADRs were reported by women (55%) and only 2% of 956 regimen switches were due to ADRs.

Conclusion and Recommendations
Active surveillance plays a critical role in ensuring patient safety post the marketing approval of HIV and anti-TB medicines. This activity demonstrates the local feasibility of a practical and sustainable pharmacovigilance system that could later be scaled up throughout the country.

**Implementing an HIV/TB Active Surveillance System in Swaziland to Improve Patient Safety**

Khedile Kweon (Presenter)
Chimere Owanne, Nomsa Shongwe & Kidwell Mchoghoyena
27th November 2015
2nd African Society of Pharmacovigilance Conference

**Introduction (1/2)**
- Swaziland has an HIV prevalence rate of 26% and one of the highest TB incidence rates worldwide.
- The TB/HIV co-infection rate is greater than 20%.
- 66% of TB/HIV co-infected patients are receiving treatment for both diseases.
- The continuous introduction of new essential medicines necessitates the concurrent monitoring of their adverse effects.
- The burden of adverse events from poor product quality, adverse drug reactions (ADRs), and medication errors may prevent the full benefits of these new medicines.

**Introduction (2/2)**
The Ministry of Health (MOH), supported by the USAID-funded SIAPS program, prioritized the establishment and strengthening of a TB/HIV active surveillance system in order to:
- Reduce the likelihood of medicine resistance
- Increase patient compliance
- Improve retention rates
- Improve treatment outcomes
- Inform decisions for improving patient safety and treatment protocols

**The Approach (1/2)**
- Passive/spontaneous reporting:
  - Ongoing
  - ADR reports using standard form
  - For all adverse drug events (ADEs)

**The Approach (2/2)**
- Development of the prosthetics and tools to operate electronic surveillance system
- PILOT at 5 sentinel sites (TB/HIV Focus) in May 2015
- Establishment of a National Pharmacovigilance Unit within the MOH

**Results (1/5)**
- Number of patients recruited: 3006
- 58% enrollees are female & 42% male
- 65% of enrollees are using ARTs
- 35% of enrollees are using and TB medicines
- Total number of ADEs reported: 1069
  - Patients on TB treatment accounted for 46% of ADEs
  - Patients on ART accounted for 36% of ADEs
Implementing a TB/HIV Active Surveillance System in Swaziland

Results (2/5)

Results (3/5)

Results (4/5)

Results (5/5)

Other Achievements & Conclusion

Achievements:
- Full Uppsala Monitoring Centre Membership – June 2015
- Causality Assessment of most ADRs in system
- Latest newsletter (Medicines Safety Watch) – disseminated August 2015
- Process of establishing a National PV Advisory Committee

Swaziland PV System:
- Demonstrated the local feasibility of a practical and sustainable pharmacovigilance system that can be used to promote the safety of patients on ARVs and anti-TB medicines
- Addresses practical issues that affect adherence, quality of life, and treatment outcomes

Actions Taken from Active Surveillance Data Use:
- Development of ADR management guidelines that are aligned with the Swiss and Essential Medicines List
- To improve the management and safety of medicines
- Assemble an ADR management plan for the country
- Generate risk profile of patients on ARVs and anti-TB medicines
- Inform treatment guidelines for co-infected patients

Future Plans for Active Surveillance Data Use:
- Development of a risk profile to identify high-risk patient groups
- Develop a surveillance system to monitor the safety of newly introduced medicines

THANK YOU
Annex A. Selection of Abstracts and Presented Work


Improving Adherence to Treatment and Patient Safety by Implementing an HIV/TB Active Surveillance System in Swaziland

BACKGROUND

Because Swaziland is burdened with an HIV prevalence rate of 26%, a TB incidence rate of 83 per 100,000, and an HIV/TB co-infection rate of more than 60%, the country has mounted a full regimen of high-impact interventions, including treating over 80% of people living with HIV. The high number of patients receiving ARTs and the toxicities associated with these medicines accentuate the need to monitor and manage their adherence drug events (ADEs) for improved patient safety and adherence. Timely and effective management of ADEs reduces the 14% effect experienced by patients that may lead to non-adherence.

DESCRIPTION

The Ministry of Health, with support from the USAID/Health Systems Strengthening (HSS) Program, established an HIV/TB active surveillance system to improve ART management and inform decision-making. The two-year prospective observational cohort study was introduced at five pilot hospitals providing HIV/TB services. The process included:

- Developing protocols and tools, including an electronic pharmacovigilance (PV) database
- Training health care professionals
- Ensuring treatment naïve HIV patients and TB patients starting a new regimen and monitoring their ADEs for an initial period of two years
- Collecting data monthly, analyzing it, doing a causality assessment, and conducting supportive supervisory visits
- Developing a quarterly newsletter to disseminate PV data and share latest knowledge

RESULTS

There are presently 3,793 patients enrolled in the active surveillance system (June 2013–May 2016) (62% females and 38% males).

<table>
<thead>
<tr>
<th>Facility</th>
<th>n of Patients</th>
<th>n of ADEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDS Clinic</td>
<td>261</td>
<td>17</td>
</tr>
<tr>
<td>Good Shepherd Hospital</td>
<td>518</td>
<td>205</td>
</tr>
<tr>
<td>Hatfield Government Hospital</td>
<td>300</td>
<td>21</td>
</tr>
<tr>
<td>Mbabane Government Hospital</td>
<td>484</td>
<td>144</td>
</tr>
<tr>
<td>MSF - Manzini</td>
<td>1,032</td>
<td>3</td>
</tr>
<tr>
<td>National TB Hospital</td>
<td>211</td>
<td>51</td>
</tr>
<tr>
<td>EPMU Hospital</td>
<td>655</td>
<td>260</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2,793</td>
<td>1,198</td>
</tr>
</tbody>
</table>

68% of enrolled patients are using ARTs
32% of enrolled patients are using an ART medicines
Patients on TB treatments accounted for 43% of ADEs
Patients on ART accounted for 57% of ADEs

Distribution of ADEs by Age Group

CONCLUSION

Swaziland has established an effective, integrated PV system (synchronizing passive and active surveillance) to improve the identification and management of ADEs and their associated risks.
Implementing a TB/HIV Active Surveillance System in Swaziland

Abstract presented at 47th Union Conference on Lung Health and Tuberculosis, Liverpool, United Kingdom, October 2016

PD-888-28 Strengthening patient-centered care through implementing a TB/HIV active surveillance system in Swaziland

Authors: Khoutile Kunene
1Systems for Improved Access to Pharmaceuticals and Services (SIAPS). Management Sciences for Health, Mbabane, Swaziland.
2Ministry of Health, Mbabane, Swaziland.

Background and Challenges to Implementation
Swaziland has a tuberculosis (TB) incidence rate of 733/100 000 with drug-resistant TB prevalence of 7.7% and 33.7% among new and previously treated patients, respectively. Compounding the challenge is an HIV prevalence of 26% and TB-HIV co-infection rate of 80%. The country’s forceful response to the dual-burden resulted in accelerated access to treatment necessitating the establishment of a robust pharmacovigilance (PV) system. The Ministry of Health established an active surveillance system in June 2013, focusing on patients initiating new TB regimen and antiretrovirals (ARVs). Nonetheless, with staff rotation, attrition and fatigue, the quantity of patients enrolled on active surveillance and quality of adverse drug event (ADE) reports declined. There was also need to use the available information to improve patient care.

Intervention
The Ministry of Health (MOH), with support from the USAID-funded Systems for Improved Access to Pharmaceuticals and Services program (SIAPS) formally established a National Pharmacovigilance Unit within the MOH, which:
- Reviewed the PV system tools to make them more comprehensive.
- Conducts re-sensitization trainings and monthly supportive supervision visits to implementing facilities.
- Conducts quarterly data analysis, causality assessment and information dissemination.
- Developed three job aids to improve reporting rates and standardize the identification and grading of ADEs.
- Developed ADE management guidelines aligned to the Swaziland Essential Medicines List to improve ADE management and limit patient out-of-pocket medicines-expenditure.

Results and lessons learnt
- Comparing pre-implementation (August 2014–February 2015) and post-implementation findings (March 2015–September 2015), the patient enrolment rate onto the system increased by 58% and the ADE reporting rate increased by 83%.
- Causality assessment showed improved ADE reporting quality, with 95% of ADEs reported being probably/possibly caused by the medicines (an increase from 90% in February 2015).

Conclusion
Swaziland effectively established an integrated pharmacovigilance system to reduce the risks associated with ADEs, improve ADE management and patient safety. Due to improved data accuracy, the data on ADEs for TB patients on 2nd line treatment was used to quantify the number of patients who will require bedaquiline due to toxicities. The results are also being used to generate a risk profile to inform treatment guidelines for co-infected patients.